首页> 外文OA文献 >Determination of Boiling Range of Xylene Mixed in PX Device Using Artificial Neural Networks
【2h】

Determination of Boiling Range of Xylene Mixed in PX Device Using Artificial Neural Networks

机译:用pX测定pX装置中二甲苯沸程   人工神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Determination of boiling range of xylene mixed in PX device is currently acrucial topic in the practical applications because of the recent disputes ofPX project in China. In our study, instead of determining the boiling range ofxylene mixed by traditional approach in laboratory or industry, we successfullyestablished two Artificial Neural Networks (ANNs) models to determine theinitial boiling point and final boiling point respectively. Results show thatthe Multilayer Feedforward Neural Networks (MLFN) model with 7 nodes (MLFN-7)is the best model to determine the initial boiling point of xylene mixed, withthe RMS error 0.18; while the MLFN model with 4 nodes (MLFN-4) is the bestmodel to determine the final boiling point of xylene mixed, with the RMS error0.75. The training and testing processes both indicate that the models wedeveloped are robust and precise. Our research can effectively avoid the damageof the PX device to human body and environment.
机译:由于近来中国PX项目的争议,在PX装置中混合二甲苯的沸程的确定是当前在实际应用中的重要课题。在我们的研究中,我们没有建立实验室或工业中传统方法混合的二甲苯的沸程,而是成功建立了两个人工神经网络(ANN)模型来分别确定初始沸点和最终沸点。结果表明,具有7个节点的多层前馈神经网络模型(MLFN-7)是确定二甲苯混合液初始沸点的最佳模型,RMS误差为0.18。而四节点的MLFN模型(MLFN-4)是确定混合二甲苯最终沸点的最佳模型,RMS误差为0.75。培训和测试过程都表明我们开发的模型是可靠且精确的。我们的研究可以有效避免PX设备对人体和环境的损害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号